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Abstract. In this paper, the behavior of a hexacopter with the existence of disturbances 

inserted into the equations of motion was explored. These disturbances emulate the motion of 

a robotic arm attached to the body of the aircraft model. Initially, kinematics and dynamics 

are described. Then, equations of motion are derived for modeling and disturbances analysis. 

The derived dynamic model reflects the real motion of the hexacopter with respect to the 

earth, which is also characterized by nonlinearity, time variance, underactuation and coupling 

among the equations' variables. The state space method was used to write the equations in 

addition to decoupling and linearization techniques in order to design the controllers. Finally, 

PID and LQR controllers and simulation results are presented. Both PID and LQR controllers 

have been investigated to control the aircraft model. The results of comparison between them 

indicate that the LQR controller is kind of an optimization technique and used to stabilize the 

attitude of the hexacopter. It consumes low energy with respect to the PID controller in 

addition to rejecting the perturbation and noise in the stochastic state space of the aircraft 

model.  

1. Introduction 

Nowadays, Drones invade several application domains [1,2,3,20,24,26]. The control of an 

aerial robot such as a hexacopter requires studying its dynamics in order to account for gravity 

effects, aerodynamic forces [1,2,21,22,23] and disturbances. This work will focus on the 

modeling, simulation, and control of a hexacopter type UAV. The reason for choosing a 

hexacopter is challenging in the control field because it’s a highly nonlinear, multivariable, 

coupled and underactuated system, in addition to its advantages such as high maneuverability 

and stationary flight [4,5]. Underactuated systems, defined as a mechanical system in which 

the dimension of the configuration space exceeds that of the control input space, that is, with 

fewer control inputs than degrees of freedom [2]. Modeling of such a system is not a trivial 

problem due to the coupled dynamics of the aerial vehicle [3]. The contributions of this work 

are deriving an accurate and detailed mathematical model of a hexacopter UAV in regard to 

the earth frame. The equation of motion of the whole system was designed using the Newton-

Euler formulation for translational and rotational dynamics of a rigid body [4,5,6,7,8,25,26]. 

The disturbances are presented as an outdoor environment for simulation and it was 

considered as a so complicated problem in addition to the stochastic idea in the state space 

model [9, 10], which is omitted in most of the literature. This paper includes the disturbances, 

which represent the robotic arm movement of a robotic arm attached to the hexacopter in the 
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equations of force and moment. Lucia [3] and Hasan [4] work in comparison to this research 

relied on a complex mechanism through the mathematical modeling of certain arms of fixed 

design, and adding it to the flying object equations. This is considered limited, complex, and 

does not cover the changes that may occur in the air, and weather conditions to which the 

aircraft is exposed in the air far from laboratory conditions. The disturbances have been 

measured using LabVIEW software and used to build a stochastic state space model [11], 

which is a simple type of representation with the existence of noise. Two types of control 

methods were investigated, using proportional integral deferential PID controller and linear 

quadratic regulator LQR controller in order to get a good response in addition to low energy 

consumption. Bouabdallah implemented such a type of controller in the closed loop system to 

stabilize the angular attitude of a UAV [12] [13] [14]. Castillo implemented an LQR 

controller too, to stabilize a quadcopter in hover situation [15]. Hoffmann et al. used the LQR 

as a solution to the energy problem in order to apply lower costs on attitude deviations by 

varying the Q matrix, but this degraded the tracking performance. A good compromise is 

found in [16]. This paper is structured as follows: initially, kinematics and dynamics are 

described. Then, equations of motion are derived for modeling and disturbances analysis. 

Finally, PID and LQR controllers and simulation results are presented. The future work will 

focus on developing attitude, position, and altitude robust controllers to obtain proper 

strategies for autopilot stabilization and trajectory control. 

2. Reference Systems for the UAV Hexacopter 

To describe the hexacopter motion only two reference systems are necessary: earth inertial 

frame (E-frame) and body-fixed frame (B-frame). The inertial frame is the system that uses 

the North, East, and Down (NED) coordinates and the origin of this reference system is fixed 

in one point located on the earth surface as shown in Fig. 1, and the (X, Y, Z) axes are 

directed to the North, East, and Down, respectively. The mobile frame (𝑋𝐵, 𝑌𝐵, 𝑍𝐵) is the body 

fixed frame that is centered in the hexacopter center of gravity (CG) and oriented as shown in 

Fig. 1. The angular position of the body frame with respect to the inertial one is usually 

defined by means of the Euler angles: roll 𝜙, pitch 𝜃, and yaw 𝜓, where vector: 𝜎 =

[𝜙 𝜃 𝜓]𝑇,𝜙 𝑎𝑛𝑑 𝜃 ∈] −
𝜋

2
,
𝜋

2
[;  𝜓 ∈] − 𝜋, 𝜋[. The inertial frame position of the vehicle is 

given by vector 𝜉 = [𝑥 𝑦 𝑧]𝑇 [4, 16, 17]. The transformation from the body frame to the 

inertial frame is realized by using the well-known rotation matrix 𝐶𝑏
𝑛 [16, 17]. while the 

transformation matrix for angular velocities from the body frame to the inertial one is 𝑆 [3, 

18]. Where �̇� = 𝑆 .  Ω , �̇� = 𝐶𝑏
𝑛 .  𝑉 , the angular velocity is defined by vector Ω = [𝑝 𝑞 𝑟]𝑇 , 

and the linear velocity is defined by vector V = [𝑢 𝑣 𝑤]𝑇 in the body frame. 

 

 
Figure 1. Hexacopter UAV structure and frames. 
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3. Dynamical Model of Hexacopter 

To describe the hexacopter dynamics, that is assumed to be a rigid body and has a 

symmetrical structure, Newton-Euler equations [3, 18] that govern linear and angular motion 

are used. This model has the The thrust and torque as in [15] are: |𝑇𝑖| = 𝜌𝐶𝑇𝐴𝑅
2𝜔𝑖

2 , and 

|𝑄𝑖| = 𝜌𝐶𝑄𝐴𝑅
3𝜔𝑖

2, Where blade rotation is with angular velocity 𝜔, the blade radius is 𝑅, 𝐶𝑇 

and 𝐶𝑄 are respectively thrust and torque coefficients, 𝜌 is the air density and A is the disc 

area, while the opposing force to the travelling of the hexacopter in air is the drag force and 

can be expressed by the following equation at the earth’s frame: 𝐹𝐴𝐼 = 𝐾𝑇𝐼 . �̇�, where 𝐾𝑇𝐼 is a 

diagonal matrix related to the aerodynamic friction constant 𝑘𝑡 [15, 17]. the gravity force in 

the earth frame according to [17] is: 𝐹𝐺𝐼 = 𝑚[0 0 𝑔]𝐸
𝑇 . Other forces like the Coriolis force 

from the earth, the wind, and Euler forces are considered as a disturbance, summarized as 𝐹𝐷𝐼 
in the earth frame: 𝐹𝐷𝐼 = [𝐹𝑑𝐼𝑥 𝐹𝑑𝐼𝑦 𝐹𝑑𝐼𝑧]𝐸

𝑇. the inertia matrix of the aircraft is J so 

according to [3, 4, 17] is defined as the following form: 

𝐽 = [𝐽𝑥𝑥  0  0 ; 0   𝐽𝑦𝑦  0 ; 0  0  𝐽𝑧𝑧]𝑇;  𝐽 𝜖𝑅3×3. m is the mass of hexacopter and 𝑙 is the 

distance from CG to the center of the propeller. The attitude of the vehicle in the air change, 

by controlling the angular velocity of motors, then the thrust moment vector is defined as 

𝑀𝑇 = [𝑀𝑝 𝑀𝑞 𝑀𝑟]𝑇, where 𝑀𝑝, 𝑀𝑞 , 𝑀𝑟 are the moments about the axes 𝑋𝐵, 𝑌𝐵, 𝑍𝐵 in the 

body frame [3, 4, 17]. The aerodynamic moment is expressed by the following equation: 

𝑀𝐴𝐼 = 𝐾𝑅𝐼 . Ω
2 = 𝐾𝑅𝐼[�̇�

2 �̇�2 �̇�2]𝑇 , where 𝐾𝑅𝐼 is a diagonal matrix related to the rotational 

aerodynamic friction constant by the parameter 𝐾𝑟 [15, 17]. Disturbance moment is the total 

of the disturbances affecting the torque around the aircraft axes expressed as 𝑀𝐷𝐼 =
[𝑀𝑑𝐼𝜙 𝑀𝑑𝐼𝜃 𝑀𝑑𝐼𝜓]𝑇. Propeller Gyroscopic effect 𝑀𝑔𝑦𝑟𝑜 = [−𝐽𝑟�̇�𝜔𝑟 𝐽𝑟�̇�𝜔𝑟 0]𝑇 [3], 

Where 𝐽𝑟 is the rotational inertia of the propeller [𝑁𝑚𝑆2] and the 𝜔𝑟 is the overall propeller 

speed [𝑟𝑎𝑑 𝑠⁄ ], as 𝜔𝑟 = −𝜔1 + 𝜔2 − 𝜔3 + 𝜔4 − 𝜔5 + 𝜔6. Yaw counter moment is the 

differences in rotational acceleration of the propellers defined as 𝑀𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = [0 0 𝐽𝑟𝜔�̇�]
𝑇 

[3]. When the transformation matrix for angular velocities 𝑆 → 𝐼 the hexacopter tends to the 

stable point, therefore the equations of the angular rate will be related to the earth frame, in 

addition to considering some assumptions as: 
𝐽𝑟

𝐽𝑥
=

𝐽𝑟

𝐽𝑦
=

𝐽𝑟

𝐽𝑧
→ 0 is a small effect around zero, 

𝑎 =
𝑘𝑡

𝑚
→ 0 and 𝐽𝑥 = 𝐽𝑦. Therefore, the equations that govern the translational and rotational 

motion with respect to the earth frame are shown in Eq. 1, The control input to the system is 

vector 𝑈 = [𝑈𝑥 𝑈𝑦 𝑈𝑧 𝑈𝑝 𝑈𝑞 𝑈𝑟]𝑇. 

(

�̈� = 𝑈𝑥 −
𝑘𝑡
𝑚
 �̇� + 𝐹𝑑𝐼𝑥

𝑚

�̈� = 𝑈𝑦 −
𝑘𝑡
𝑚
 �̇� +

𝐹𝑑𝐼𝑦

𝑚

�̈� = 𝑈𝑧 −
𝑘𝑡
𝑚
 �̇� − 𝑔 + 𝐹𝑑𝐼𝑧

𝑚

) and 

(

 
 
�̈� = 𝑈𝑝 + 𝑏1�̇��̇� + 𝑐1 �̇�

2 +
𝑀𝑑𝐼𝜙

𝐽𝑥

�̈� = 𝑈𝑞 + 𝑏2�̇��̇� + 𝑐2 �̇�
2 + 𝑀𝑑𝐼𝜃

𝐽𝑦

�̈� = 𝑈𝑟 + 𝑐3 �̇�
2 +

𝑀𝑑𝐼𝜓

𝐽𝑧 )

 
 

                               (1) 

where 

{
 
 
 

 
 
 𝑈𝑝 =

𝑀𝑝

𝐽𝑥
=

√3𝜌𝑙𝑐𝑇𝐴𝑅
2

2𝐽𝑥
(𝜔3

2 + 𝜔6
2 − 𝜔4

2 − 𝜔5
2) = 𝑎𝜙(𝜔3

2 +𝜔6
2 − 𝜔4

2 − 𝜔5
2)

𝑈𝑞 =
𝑀𝑞

𝐽𝑦
=

𝜌𝑙𝑐𝑇𝐴𝑅
2

2𝐽𝑦
(𝜔3

2 + 𝜔5
2+2𝜔1

2 − 𝜔4
2−𝜔6

2 − 2𝜔2
2) = 𝑎𝜃(𝜔3

2 +𝜔5
2+2𝜔1

2 − 𝜔4
2−𝜔6

2 − 2𝜔2
2)

𝑈𝑟 =
𝑀𝑟

𝐽𝑧
=

𝜌𝑐𝑄𝐴𝑅
3

2𝐽𝑧
(𝜔1

2 + 𝜔4
2+𝜔6

2 − 𝜔2
2−𝜔3

2 −𝜔5
2) = 𝑎𝜓(𝜔1

2 + ω4
2+𝜔6

2 − 𝜔2
2−𝜔3

2 − 𝜔5
2)

𝑏1 =
(𝐽𝑦−𝐽𝑧)

𝐽𝑥
 , 𝑏2 =

(𝐽𝑧−𝐽𝑥)

𝐽𝑦
, 𝑐1 = −

𝑘𝑟
𝐽𝑥
, 𝑐2 = −𝑘𝑟

𝐽𝑦
, 𝑐3 = −𝑘𝑟

𝐽𝑧

   (2) 
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{
 
 

 
 𝑈𝑥 =

(𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓) 𝑢𝑇 𝑚⁄ = 𝑎𝑥(𝜙, 𝜃, 𝜓)∑ 𝜔𝑖
26

𝑖=1

𝑈𝑦 = (𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓) 𝑢𝑇 𝑚⁄ = 𝑎𝑦(𝜙, 𝜃, 𝜓)∑ 𝜔𝑖
26

𝑖=1

𝑈𝑧 = (𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃) 𝑢𝑇 𝑚⁄ = 𝑎𝑧(𝜙, 𝜃)∑ 𝜔𝑖
26

𝑖=1

𝑢𝑇 = ∑ |𝑇𝑖|
6
𝑖=1 = 𝜌𝐶𝑇𝐴𝑅

2∑ 𝜔𝑖
26

𝑖=1

  (3) 

4. State Space Model 

The dynamic model presented in translational and rotational equation set can be rewritten in 

the state-space form: �̇� = 𝑓(𝑋) + 𝑔(𝑋, 𝑈) + 𝛿, where δ is the disturbances, and XЄℛ12
 is the 

vector of state variables given as follows:  𝑋 = [𝑥 �̇� 𝑦 �̇� 𝑧 �̇� 𝜙 �̇� 𝜃 �̇� 𝜓 �̇�]𝑇, Then 

we can derive the final equations of the system, which governs the transitional and rotational 

of hexacopter, with respect to the earth frame in state space as follows: 

(
�̇�2
�̇�4
�̇�6

) = (
−𝑎 0 0
0 −𝑎 0
0 0 −𝑎

)(

𝑥2
𝑥4
𝑥6
) + (

𝑈𝑥
𝑈𝑦
𝑈𝑧

)+ (

𝐹𝑑𝐼𝑥 𝑚⁄

𝐹𝑑𝐼𝑦 𝑚⁄
𝐹𝑑𝐼𝑧
𝑚
− 𝑔

) = (

𝑈𝑥
𝑈𝑦
𝑈𝑧

) + (

𝐹𝑑𝐼𝑥 𝑚⁄

𝐹𝑑𝐼𝑦 𝑚⁄
𝐹𝑑𝐼𝑧
𝑚
− 𝑔

)  (4) 

(

�̇�8
�̇�10
�̇�12

) = (

𝑏1𝑥10𝑥12 + 𝑐1𝑥8
2

𝑏2𝑥8𝑥12 + 𝑐2𝑥10
2

𝑏3𝑥8𝑥10 + 𝑐3𝑥12
2

) + (
1 0 0
0 1 0
0 0 1

)(

𝑈𝑝
𝑈𝑞
𝑈𝑟

) +

(

 
 

𝑀𝑑𝐼𝜙

𝐽𝑥
𝑀𝑑𝐼θ
𝐽𝑦

𝑀𝑑𝐼𝜓

𝐽𝑧 )

 
 

  (5) 

The control input to the system is vector 𝑈 = [𝑈𝑥 𝑈𝑦 𝑈𝑧 𝑈𝑝 𝑈𝑞 𝑈𝑟]𝑇, where the 

following equation Eq. 21 gives the relation between the angular speed of the propellers and 

the control inputs. The model of disturbances, which simulates the robotic arm, was presented 

as shown in Fig. 2. The final concluded equations represent nonlinearity, coupling and time-

variance in the variables that are not considered in other papers like [3, 4], which use 

simplification techniques as well as linearization tools. Any change in the input variables 

leads to changes in most of the output variables. With respect to the control input vector U, it 

is clear that the rotational subsystem is fully-actuated, while the translational subsystem is 

underactuated as it is dependent on both the translational state variables 𝑥1 to 𝑥6 and the 

rotational ones 𝑥7 to 𝑥12. 

[
 
 
 
 
 
𝑈𝑥
𝑈𝑦
𝑈𝑧
𝑈𝑝
𝑈𝑞
𝑈𝑟]
 
 
 
 
 

=

[
 
 
 
 
 
+𝑎𝑥 +𝑎𝑥 +𝑎𝑥 +𝑎𝑥 +𝑎𝑥 +𝑎𝑥
+𝑎𝑦 +𝑎𝑦 +𝑎𝑦 +𝑎𝑦 +𝑎𝑦 +𝑎𝑦
+𝑎𝑧 +𝑎𝑧 +𝑎𝑧 +𝑎𝑧 +𝑎𝑧 +𝑎𝑧
  0      0     +𝑎∅ −𝑎∅ −𝑎∅ +𝑎∅
2𝑎𝜃 − 2𝑎𝜃 +𝑎𝜃 −𝑎𝜃 +𝑎𝜃 −𝑎𝜃
+𝑎𝜓 −𝑎𝜓 −𝑎𝜓 +𝑎𝜓 −𝑎𝜓 +𝑎𝜓]

 
 
 
 
 

.

[
 
 
 
 
 
 
𝜔1
2

𝜔2
2

𝜔3
2

𝜔4
2

𝜔5
2

𝜔6
2]
 
 
 
 
 
 

   (6) 

  
Figure 2. Force and momentum disturbances resulted from the robotic arm. 
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5. Proportion, Integral, And Derivative Controller Design 

Four linear and classical PID controllers are presented, and their parameters were tuned using 

Ziegler Nichols algorithm [19]. The controllers speed here is considered suitable in a way that 

enables tracking the vibrations and changes in order to avoid the vibrations in the output of 

the aircraft as much as possible. The aim of these controllers is to control attitude and altitude 

of the vehicle at desired trajectory in space. The PID mathematical model is described as [19]: 

𝑢(𝑡) =  𝑘𝐶[𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝑡) . 𝑑(𝑡) + 𝑇𝑑

𝑑

𝑑𝑡
𝑒(𝑡)]  (7) 

Parameter 𝑘𝑐 is the proportional gain, 𝑇𝑖 is the integral time, and 𝑇𝑑 is the derivative time. 

These parameters are defined, in order to get the best performance by decreasing vibrations, 

steady-state errors, and response time. Fig. 3 shows a block diagram of PIDs controlling 

hexacopter. The parameters of each PID are defined as: 

𝑢𝑇(𝑡) =  24.19[𝑒(𝑡) +
1

0.08299
∫ 𝑒(𝑡) . 𝑑(𝑡) + 0.01328 𝑑

𝑑𝑡
𝑒(𝑡)]  (8) 

𝑢𝑝(𝑡) =  0.001[𝑒(𝑡) +
1

6.1
∫ 𝑒(𝑡) . 𝑑(𝑡) + 0.1 𝑑

𝑑𝑡
𝑒(𝑡)]  (9) 

𝑢𝑟(𝑡) =  −0.00103[𝑒(𝑡) +
1

6.3
∫ 𝑒(𝑡) . 𝑑(𝑡) + 0.04073 𝑑

𝑑𝑡
𝑒(𝑡)]  (10) 

𝑢𝑦(𝑡) =  0.006[𝑒(𝑡) + 1

20
∫ 𝑒(𝑡) . 𝑑(𝑡) + 0.4 𝑑

𝑑𝑡
𝑒(𝑡)]  (11) 

 
Figure 3. A block diagram of PIDs connected to Hexacopter model. 

 

To control a hexacopter an application was conducted by LabVIEW using Runge-Kutta 2 

method with a fixed step of 0.05 [sec]. The PID controllers were implemented to stabilize the 

altitude and attitude as shown from Fig. 4 to Fig. 8. The curves show the control signal and 

the fast response of the controllers with the existence of disturbances that emulate the 

existence of an arm in a non-laboratory environment. These controllers avoid the occurrence 

of vibrations in the output variables of the flying object as possible. The tuning process has 

been achieved after many experimental trials. Our scenario is the hovering flight at the 

altitude of multi-levels in the air according to table 1. The system’s parameters, which has 

been used in the simulation model, are listed in table 2. Correlations were analyzed for all 

parameters of motion equations.   

 

Table 1. Stability Response of PID Controllers. 
Steady-State Error Response Time [S] PID Controller 

-0.0911 [m] 22.5 Altitude 

0.01955 [deg] 8.15 Pitch 

0.0941 [deg] 5.72 Roll 

0.00173 [deg] 5.58 Yaw 
 

Table 2. Parameters used in the simulation. 
m=4 [kg] g=9.806 

[m/s2] 
l=0.5 [m] 

𝐽𝑥, 𝐽𝑦=3.8e-4 

[kg.m.s2/rad] 

R =0.15 [m] 𝑘𝑡=4.8e-3  
[kg.s/m] 

𝐽𝑧=7.1e-4  
[kg.m.s2/rad] 

A =0.071 
[m2] 

𝑘𝑟=6.4e-5 
[kg.m.s/rad] 

𝐶𝑇=0.01458 𝐶𝑄=1.037e-3 ρ=1.293  
[kg/m3] 

 

𝑢𝑝 
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𝑢𝑟 
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Figure 4. Stability response of altitude 

and control signal. 

Figure 5. Stability response of pitch angle 

and control signal. 

  
Figure 6. Stability response of roll angle 

and control signal. 

Figure 7. Stability response of yaw angle 

and control signal. 

  
Figure 8. Stability response of X and Y coordinate systems. 

6. Linear Quadratic Regulator 

This kind of controller aims to minimize the following quadratic cost function [15, 16]: 

𝐽 = ∫ [𝑋𝑇(𝑡). 𝑄. 𝑋(𝑡) + 𝑈𝑇(𝑡). 𝑅. 𝑈(𝑡)]𝑑𝑡
∞

0
  (27) 

Using a feedback controller gain 𝑘 such that 𝑈(𝑡) = −𝑘𝑋(𝑡), where 𝑄, 𝑅 are weighting 

matrices. The task in LQR design is to choose appropriate weighting matrices. Where 𝑄, 𝑅 

diagonal matrices, 𝑄 limit the amplitude of the state variables while 𝑅 limit the amplitude of 

the inputs and these coefficients treat the optimization and energy terms in the model. The 

main goal is to make the vehicle reach its desired position as fast as possible.  The state space 

representation of the dynamic model is 𝑋 = 𝐴𝑋 + 𝐵𝑈 + 𝛿𝑀, Where: 𝐴 is a state matrix, 𝐵 is a 

input matrix, 𝑋 = [∅ 𝜃 𝜓 ∅̇ �̇� �̇�]𝑇 is a state vector, 𝑈 = [𝑀𝑝 𝑀𝑞 𝑀𝑟]𝑇 is a 

control signal  𝛿𝑀 = [𝑀𝑑𝐼𝜙 𝑀𝑑𝐼𝜃 𝑀𝑑𝐼𝜓]𝑇 is disturbance vector of moments, and finally 

reference vector is 𝑋𝑟 = [∅𝑟 𝜃𝑟 𝜓𝑟 ∅̇𝑟 �̇�𝑟 �̇�𝑟]
𝑇. The LQR controller was 

implemented on a state vector to follow the reference vector. The model was linearized 

around the hover situation after decoupling the equations of motion in Eq. 1, and writing the 

stochastic state space model in addition to add disturbances to emulate the real motion in the 

sky. It is considered weak to make an approximation in describing the whole aircraft system 

in the state space, because the translational movement equations in the earth frame are 

dependent on the output of the rotational movement equations, therefore the system is divided 

into two state spaces. A linear–quadratic regulator (LQR) controller was designed only for the 

rotational movement. The random state space allows adding the disturbances to the model 

therefore it is considered closer to the real aircraft model, where its information is taken based 

on the covariance and mean calculations of previously studied disturbances’ measurements. 

Fig. 9 illustrates the application of the LQR controller to the aircraft. The closed loop 
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simulation results using LabVIEW are shown on table (3). Fig. 10 shows the model’s states 

after applying the LQR controller. Figures 11 and 12 show the results of applying the LQR 

controller and the control signals. The amplitude values of the control signals are very small 

in comparison to the PID controller, leading to reduction in the consumed power.  
 

 
Figure 9. A block diagram of PIDs connected to Hexacopter model. 

 

Table (3) Stability Response of LQR Controller. 
Time Response Parametric Data ∅ 𝜽 𝝍 

Settling Time [s] is the time required for the response to reach 1% of 
its final value. 

0.05 0.05 0.05 

Rise Time [s] is the time required for the dynamic system response to 

rise from 10% of its final value to 90% of its final value. 
0.05 0.05 0 

Peak Time [s] is the time required for the dynamic system response to 
reach the peak value of its first overshoot. 

0.05 0.05 0.05 

Peak value returns the value at which the maximum absolute value 

of the time response occurs. 

1.16842 1.16842 1.09014 

Overshoot is the dynamic system response value that most exceeds 

unity, expressed as a percent. 
1.75277E-5 1.75277E-5 1.87856E-5 

Steady-State Gain is the final value of the signal after transient 

responses decay. 
1.16842 1.16842 1.09014 

 

  
Figure (10). Time response of open and closed loop for stochastic state space model. 

  
Figure (11). Stability response of roll, pitch and 

yaw angles and their error signals. 
Figure (12). Control signals of LQR 

controller. 
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Conclusions 

In this paper, the behavior of a hexacopter with the existence of disturbances inserted into the 

equations of motion was explored. These disturbances emulate the motion of a robotic arm 

attached to the body of the aircraft model. The derived dynamic model reflects the real motion 

of the hexacopter with respect to the earth, which is also characterized by nonlinearity, time 

variance, underactuation and coupling among the equations' variables. The state space method 

was used to write the equations in addition to decoupling and linearization techniques in order 

to design the controllers. Both PID and LQR controllers have been investigated to control the 

aircraft model. The results of comparison between them indicate that LQR controller is kind 

of an optimization technique and used to stabilize the attitude of the hexacopter. It consumes 

low energy with respect to the PID controller in addition to rejecting the perturbation and 

noise in the stochastic state space of the aircraft model. 
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