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Abstract: An analysis of viscoelastic bending of sandwich beam, consisting of elastic bearing layers 
and viscoelastic core will be given. The analysis is based on Volterra integral equations with 
exponential kernels and Volterra resolvent operators. Theory is verified by experimental data from 
three- point bending. 
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1 Introduction  
Polymer foam-core sandwich panels and beams are increasingly used for load-bearing 
components in buildings. Sandwich panels and beams are offering a high stiffness per unit 
weight. But such structures from polymers creep at room temperature, what is limiting their use 
in structural applications. In this study, we combine the viscoelastic model for foam creep with 
the analysis of deflection of a sandwich beam to develop an expression for the creep of a 
sandwich beam with a polymer foam core. The results are compared with data from a series of 
tests on sandwich beams with polymer based composite and rigid foam core.  
 
2 Experimental evaluating of creep for the core 
 For mechanical testing has been delivered a sandwich plate with bearing layers from 
composite, reinforced by glass fibres and polyester matrix. First, the foam creep has been 
tested on cuboid testing samples, which were loaded in compression by constant load in a set-
up developed and manufactured in Klokner Institute. Transversal displacements were 
measured by LVDTs and strains by strain gauges. Load and unload application time was  at 
least 24 hrs. The course of strain for 24h loading and 24 h unloading is shown on Fig.1. 
 
 
 
 

Fig. 1 Strain vs time in compression of sandwich core  
 



Theoretical course of strain vs time according to Poynting- Thomson model has relationship

  

and strain is depending on three material parameters E, which can be evaluated by collocation 
method. For the material in Fig.1 the following values have been found: 
E1=24.615 N/m2, E2=45.714 N/m2, K=1961.0 N/m2.hr 
 
3 Experimental evaluating of vertical deflection at tree-point bending 
Testing samples were put into a set-up for three point testing and loaded by a constant load 
300, 600 and 800 N. Distance between supports was 200 mm, length of samples 300 mm, 
width 50 mm. Vertical deflection has been measured by LVDT sensors and data acquisition 
system National Instruments NI 1052 in program environment LabWindows. Measured 
values have been evaluated by MS Excel and compared with theoretical values. The 
comparison of results shows good agreement (< 10%). Results of long-term testing of 
sandwich beam are shown in Fig.2. 
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Fig. 2 Vertical displacement vs time in bending of sandwich beam  

 
4 Formulation and solution of the problem 
Paper deals with integral equations Volterra and kernels mostly of exponential type. 
Further, for simplicity, a symmetrical structure of the simply supported beam is considered. 
The load q(x,t)  is acting in direction of beam thickness z according to relation 

( ) ( ) ( )txgtxq Φ=,  where Φ (t) is Heaviside function. 
Below, for the simplicity, the symmetric structure of the simply supported beam is 
considered.  
 Let us treat by beam core, where the shear stress τ is of main importance and define  

( )tx,1ϕτ =  ,    
  
where 02 =ϕ  can be considered. The relations satisfy 

the equilibrium condition in z direction z.  Further 
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( )αλ ∗+= CC 1  , and parameters αλ ,    are changing in dependence on adopted 

mechanical model. After integration we obtain   
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On this basis the similar relations for bearing layers are derived. Here we will define the 
integral operators S,  S-1 for a model with structural equation ( )KEE /− .  

Decisive component of stress in bearing layer is  xσ  . Relation  xx SE εσ =  is valid   and 

after some arrangement  
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 More advantageous formulation we can get on basis of generalized function ( )tx ,ω , 
where we consider  
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Now one basic equation is satisfied identically and the second is transformed into form 
 qL −=ω  , where operator L is expressed by relation  
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 Boundary conditions for simple support are given by relations  
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 At solving the problem for load  ( ) ( ) ( )txgtxq Φ=,   we will apply Fourier 

expansion of functions g ( )tx,   a  ω ( )tx, .  
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By substitution into the basic equation we obtain 

 mω  =   
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As illustration we give expression for vertical displacement for the middle of the beam (
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After substitution we obtain the relation 
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  For concentrated load we can introduce a generalized function ( )tx,ω instead of 

functions ( )tx,1ϕ , ( )txw , by substitution 10, 2 ϕω sxxx −=  and further 
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By applying the boundary conditions 0=′′= ωω  we receive for the middle of the beam 
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Operator C
~

 is of the form ( )αλ ∗+= CC
~

1 . Parameters αλ ,    are changed according to 

adopted mechanical model. For the Poynting-Thomsonův model (linear solid) and 
arrangement  2K/GG xc −   it will be valid 
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Relation  ( )tC
~ Φ   will be substituted into the above equation: 
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Conclusion 
Experimental evaluation of the analysis of bending for sandwich beams of a symmetrical 
structure with elastic bearing layers and viscoelastic core is given.  Three point testing by a 
constant load has shown good agreement with theoretical values.  
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