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Abstract. There are many ways to model and to analyze discrete event systems. In general 
these systems lead to a non-linear characteristic equation description in linear algebra. This 
paper presents an analytical method for solving the characteristic equation of higher order, 
which arise when solving ordinary differential equations of motion of rigid body systems with 
2 ≤ p° ≤ 10 degrees of freedom. The objective of this work was to express the characteristic 
equation in the form of product quadratic polynomial, from which the modal components 
could be found. To validate the model, the modal parameters extraction technique – Ibrahim 
Time Domain (ITD) – was used to extract modal parameters from artificial data developed in 
MATLAB environment. The extracted modal components were compared to those obtained 
from the analytical model. 

Introduction 

The equations of motion are fundamental in investigating the vibration of rigid bodies 
coupled with elastic and dissipative elements. The basic model of road and railway vehicles 
and some simple operational machines are presented as examples of rigid bodies system with 
lower degree of freedom 2 ≤ p° ≤ 10 approximately. The current work presents an analytical 
method for solving the characteristic equation of the rigid body, which arises when solving 
ordinary differential equations. 

The investigation focuses on the estimation of natural frequencies, damping ratio and the 
system’s mode shapes. Accuracy of the modal components obtained using the proposed 
method is evaluated by comparing results extracted from artificial experimental data 
processed in MATLAB environment. In this paper, the Ibrahim time domain is used to extract 
modal parameters from the artificial data. Ibrahim Time Domain ITD method is a time 
domain method and it uses the Impulse Response Function (IRF) data to indentify modal 
parameters. A complete development of this method is found in [1,4]. A vast amount of work 
along this line has been studied and published by many researchers. The general approaches 
to modal testing and their reviews can be found in [3] and reference [4] gives a broader 
explanation regarding modal parameter extraction techniques. 

Analytical Model 

Assuming a linear coupling of elastic and dissipative elements, and small displacement of the 
rigid bodies, the equations of motion of different kind of mechanical systems may be obtained 
in the general form as, 
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where M – the mass matrix of the system, B – the damping matrix, K – the stiffness matrix, 
)(tjQ – is the generalized excitation vector, ( )tq - vectors of the generalized coordinate. 

After dividing Eq. 1 by the respective diagonal element of the mass matrix M and after the 
Laplace transformation for the zero initial conditions ( )tq0  and ( )tq0& , the system of 

differential equations is transformed to the system of algebraic Eq. 2 in the s-domain. 

( ) ( )sfsq =⋅G  ,                                                                                                                 (2) 

where s is the parameter of transformation, ( )sq  and ( )sf  are the vectors of generalized 

coordinates ( )tq  and generalized forces ( )tf . According to [1,2,3], for solving the system of 
algebraic Eqs. 2, it is possible due to small number of equations (for p° ≤ 10), to apply the 
Cramer rule as follows, 
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Before the inverse transformation of the generalized coordinate of Eq. 3, it is necessary to 
determine the poles of polynomial )(sD  of Eq. 3. The roots of polynomial )(sD  are complex 

conjugate kkk sss ImRe ±−=  and their product is a quadratic polynomial for damped 

mechanical systems based on the assumptions made. According to [2], the poles of the 
characteristic equation of order n = 2p can be determined as follows: 
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where ( )2Im kk sr =  and ksp Re2⋅=  for the mechanical system under investigation. The real 

positive coefficients of polynomial (4) ( )inA −2  are the element functions of the mass, damping 

and stiffness matrices. Modification of the fraction of the denominator of Eq. 3 or simply 
Eq. 4 yields 
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kkkk bsrsps ω++=+⋅+  ,  for k = 1, 2, …, n/2 ,                                                       (5) 

where parameter 22
0

2
kkk b−= ωω of the quadratic polynomial is the damped natural frequency, 

kk r=2
0ω is the square inherent circular natural frequency of undamped mechanical systems 

and 
2

k
k

p
b = is the coefficient of linear viscous damping. The accuracy of results obtained 

using Eq. 4 is evaluated by comparing results extracted from artificial experimental data 
processed in MATLAB environment. 

Artificial Experimental Data 

In order to create artificial experiment data to be used later in this paper, it is necessary to 
determine original ( )tq j  of the corresponding image( )sq j , it is also suitable to transform 



 

Eq. 3 to the form of convolution integral. Therefore it is necessary to transfer or modify the 
ratio in Eq. 9 to the sum of partial fractions in the form 
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where constants Kji,r and Lji,r for j = 1, 2, …, n/2, i = 1, 2, …, n/2, r = 1, 2, …, n/2, can be 
determined from the condition of the coefficients equality of the identical powers of 
parameter s in the numerator of fractional Eq. 6. Substituting Eq. 6 into Eq. 3 for the 
determination of the image of generalized coordinates ( )sq , for  j = 1, 2, …, n/2, can be 
modified as follows 
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After inverse transformation of Eq. 7 for the function of generalized coordinate( )tq j , for 

j = 1, 2, 3,…, n, the form of the sum of convolution integral is obtained as follows,  
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where j-th component of vector of generalized coordinates, ( )tq j  is the sum integrals 

convolution multiplied by the i-th generalized kinematic excitation elements, ( )tFj  
designated by the product of spring constant and height of the road or rail surface unevenness 
(for road and rail vehicle models) and by product of damping coefficient jikb , and time 

derivative of height contact place of m-index wheel at specific crossing velocity, to the k-th 
harmonic component with its own natural frequency kω . jikK  and jikL are unknown 

coefficients of amplitude, depending on the mechanical properties of the system under 
consideration. Vector components of the kinematic excitation function are given in the range 
0 ≤ t. Eq. 8 shows the solution for a linear viscous damped mechanical system. Using Eq. 8 
the MATLAB code was implemented to produce so-called artificial experimental data. 

Ibrahim Time Domain Method 

The ITD method uses the IRF data to identify modal parameters. It makes an eigenvalue 
problem from the IRF data and solves the problem to derive the natural frequencies, damping 
ratio and the system’s mode shapes. References [1] and [4] give a complete derivative of this 
method. The ITD uses the free response of the tested system. According to [1] the approach is 
to sample the same response data, as in Eq. 8, but with a duration τ  shift. 

For the i-th measurement this means [1]: 
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For all the response points, a vector form of Eq. 9 can be written as: 
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From this analysis, three sampled data matrices [X], [Y], [Z] and three modal vector 
matrices [φ], [P], [Q] are created. Next step is to assemble an eigenvalue problem from these 
matrices, from which the complex natural frequencies and mode shapes can be derived. 

[ ][ ] [ ] [ ][ ]ΛµµVW =−1  .                                                                                                      (11) 

The upper half of [ ]µ , is the complex mode shape matrix. Matrix [ ]Λ  contains the 
complex eigenvalues [1,4]. These eigenvalues can be converted to the natural frequencies and 
damping ratio of the tested mechanical system. The r-th eigenvalue is assumed to be in the 
form 

rrr je r βατλ +==Λ  .                                                                                                       (12) 

The eigenvalues, denoted as in Eq. 12, are the r-th complex natural frequency 

krrr jn ωλ +−=  .                                                                                                               (13) 

Combining Eq. 11 with Eq. 12 yields 
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From Eqs. 16 and 17, the undamped natural frequencies and damping ratio can be found 
easily, 
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Results and Conclusion 

Fig. 1 shows, a three-degree of freedom theoretical model considered in this paper to obtain 
the system’s dynamic properties (natural frequencies, damped natural frequencies, damping 
ratio and mode shapes). The objective of the model is to investigate the effects of various 



 

eccentricities due to eccentric weight loading. This investigation is not the subject of this 
paper. Artificial data were developed in the MATLAB based on the model and the ITD was 
used to extract modal components from these data. The input parameters to referring to the 
MATLAB code are provided in Table 1. 

 
Fig. 1. Theoretical model. 

Table 1. Model parameters. 

K 16.49 ± 0.12 N⋅mm-1 m 43.702 kg 

Lx 0.690 m (690 mm) Ix 288582.52 kg⋅mm2 

Ly 0.280 m (280 mm) Iy 1736939.6 kg⋅mm2 

Lz 0.029 m (29 mm) Iz 2019396.6 kg⋅mm2 

 
Table 2 and Table 3 show the results obtained by the proposed analytical method, and also 

the results obtained from the artificial data via the ITD extraction technique are shown. The 
differences between the analytical model and the ITD were found to be in the range from 
0.38 % to 9.34 % for the natural frequency, and from 4.20 % to 9.66 % for the damping ratio. 

Table 2. Analytical and estimated modal components. 

Mode Analytical model ITD Error [%] 

1 
N. freq. [Hz] 3.84870 N. freq. [Hz] 3.86346 0.38 
Damp. ratio 0.08457 Damp. ratio 0.08828 4.20 

2 
N. freq. [Hz] 7.11782 N. freq. [Hz] 6.51007 9.34 
Damp. ratio 0.02581 Damp. ratio 0.02857 9.66 

3 N. freq. [Hz] 9.87793 N. freq. [Hz] 9.45718 4.44 



 

Damp. ratio 0.013814 Damp. ratio 0.01464 5.64 

Table 3. System’s mode shapes. 

Mode 1 Mode 2 Mode 3 
Analytical model 

1.31484⋅10-13 -4.16157⋅10-17 4.78045⋅10-14 
-1.97612⋅10-11 4.25042⋅10-15 7.44883⋅10-12 
2.58578⋅10-9 1.282329⋅10-9 1.73104⋅10-6 

ITD 
1.53122⋅10-12 -5.39776⋅10-13 4.25045⋅10-15 
-3.33551⋅10-12 2.22345⋅10-9 1.28233⋅10-9 
4.77356⋅10-8 1.57340⋅10-8 1.27328⋅10-6 

 
On the basis of the results obtained it can be confirmed that an acceptable level of 

agreement can be achieved between “test data” and the results obtained by the proposed 
method. 

Conclusion 

Obtaining accurate modal parameters that can be used for validating analytical models is a 
non-trivial and exacting task. This paper presented an analytical method for solving the 
characteristic equation of higher order, which arise when solving ordinary differential 
equations of motion of rigid body systems with 2 ≤ p° ≤ 10 degrees of freedom, from which 
the system’s modal components can be found easily. To validate the model, artificial data 
were reproduced in MATLAB, and the results compared. The results confirmed an acceptable 
level of agreement between the analytical model proposed and the modal technique – ITD. 
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