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Abstract. There are many ways to model and to analyze deseeent systems. In general
these systems lead to a non-linear characterigtiateon description in linear algebra. This
paper presents an analytical method for solvingctieracteristic equation of higher order,
which arise when solving ordinary differential etjoas of motion of rigid body systems with
2 < p° <10 degrees of freedom. The objective of this wweds to express the characteristic
equation in the form of product quadratic polyndmfeom which the modal components
could be found. To validate the model, the modahipeeters extraction technique — Ibrahim
Time Domain (ITD) — was used to extract modal paaters from artificial data developed in
MATLAB environment. The extracted modal componentse compared to those obtained
from the analytical model.

Introduction

The equations of motion are fundamental in invesing the vibration of rigid bodies
coupled with elastic and dissipative elements. bagic model of road and railway vehicles
and some simple operational machines are presastedamples of rigid bodies system with
lower degree of freedom<2p° < 10 approximately. The current work presents aryéinal
method for solving the characteristic equationha tigid body, which arises when solving
ordinary differential equations.

The investigation focuses on the estimation of natirequencies, damping ratio and the
system’s mode shapes. Accuracy of the modal conmienebtained using the proposed
method is evaluated by comparing results extradtedh artificial experimental data
processed in MATLAB environment. In this paper, theahim time domain is used to extract
modal parameters from the artificial data. Ibrahiiime Domain ITD method is a time
domain method and it uses the Impulse Responsetibnn@RF) data to indentify modal
parameters. A complete development of this methddund in [1,4]. A vast amount of work
along this line has been studied and published agymesearchers. The general approaches
to modal testing and their reviews can be found3ijnand reference [4] gives a broader
explanation regarding modal parameter extractiohrtigues.

Analytical M odel

Assuming a linear coupling of elastic and dissymtlements, and small displacement of the
rigid bodies, the equations of motion of differ&mtd of mechanical systems may be obtained
in the general form as,

Md(t) +Ba(t) +Ka(t) =Q, (1), )



whereM — the mass matrix of the systeB;- the damping matriX{ — the stiffness matrix,
Q, (t) — is the generalized excitation vectq(I)- vectors of the generalized coordinate.
After dividing Eg. 1 by the respective diagonalneést of the mass matrM and after the
Laplace transformation for the zero initial conalits qo(t) and qo(t), the system of
differential equations is transformed to the systéralgebraic Eq. 2 in thedomain.

Gy(s)=f(s). )

wheres is the parameter of transformatiot_q(s) and f(s) are the vectors of generalized
coordinatesq(t) and generalized forceé(t). According to [1,2,3], for solving the system of

algebraic Eqgs. 2, it is possible due to small nundfeequations (fop°® < 10), to apply the
Cramer rule as follows,

"D, (9
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Before the inverse transformation of the generdlizeordinate of Eq. 3, it is necessary to
determine the poles of polynomiBl(s) of Eq. 3. The roots of polynomidd(s) are complex
conjugate s, =—Res, xIms, and their product is a quadratic polynomial formged

mechanical systems based on the assumptions maderding to [2], the poles of the
characteristic equation of order 2p can be determined as follows:

n/2

D(S)=_ZZnAz(n_i) p2) = ﬂ (s + p B+1,) ,
(4)

wherer, = (ImsK)2 and p=2[Res, for the mechanical system under investigation. iEa
positive coefficients of polynomial (4,6\2(n_i) are the element functions of the mass, damping

and stiffness matrices. Modification of the fraatiof the denominator of Eq. 3 or simply
EqQ. 4 yields

$2+p B+r, =+ S +af , fork=1,2, .2, 5)

where parametetf = «f —b?of the quadratic polynomial is the damped naturedjdency,
«f, =r,is the square inherent circular natural frequentcyiralamped mechanical systems

and b, =%is the coefficient of linear viscous damping. TheEwacy of results obtained
using Eqg. 4 is evaluated by comparing results etdchfrom artificial experimental data

processed in MATLAB environment.

Artificial Experimental Data

In order to create artificial experiment data toused later in this paper, it is necessary to
determine originalqj(t) of the corresponding imagq(s), it is also suitable to transform



Eq. 3 to the form of convolution integral. Therefat is necessary to transfer or modify the
ratio in Eq. 9 to the sum of partial fractions lne tform

n/2 n/2

Z (Kji,r 5+ Lii,r)l:l:l (52 +p B+ rk)

Dij (S)= = ki =nzlz Kji,r [k + Lji,r , (6)
D(S) ﬁ(sz+pkEs+rk) r=1 Sz+pk|:S+rk

where constantkji, andLji, forj =1, 2, ..., n/l2] =1, 2, ..., n/2y =1, 2, ..., n/2, can be
determined from the condition of the coefficientguality of the identical powers of
parameters in the numerator of fractional Eq. 6. Substitutieg. 6 into Eq. 3 for the
determination of the image of generalized coordisgs), for j = 1, 2, ...,n/2, can be
modified as follows

AL Kji,k[s+|-ji,k . (7)

a,(9)= 3 (-1)" 07 (6) 3,
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After inverse transformation of Eq. 7 for the fuoatof generalized coordinang(t), for
j=1, 2, 3,...n, the form of the sum of convolution integral idabed as follows,

t

q,(t) = Zn: (-1 "”Zn: {K MJ. F(r)e? ) cosw, (t-7)dr +

k=1 0

Lik = A j F (r)e”sinw, (t-1)d r} : (8)

wk 0

where j-th component of vector of generalized coordinatq§(t) is the sum integrals

convolution multiplied by thei-th generalized kinematic excitation elemem’éj(t)

designated by the product of spring constant amghhef the road or rail surface unevenness
(for road and rail vehicle models) and by produttdamping coefficientb;, , and time

derivative of height contact place ofindex wheel at specific crossing velocity, to #aith
harmonic component with its own natural frequenay. K, and L; are unknown

coefficients of amplitude, depending on the meatenproperties of the system under
consideration. Vector components of the kinematwtation function are given in the range
0 <t. Eqg. 8 shows the solution for a linear viscous padhmechanical system. Using Eq. 8
the MATLAB code was implemented to produce so-chdlgificial experimental data.

I brahim Time Domain M ethod

The ITD method uses the IRF data to identify mgaalameters. It makes an eigenvalue
problem from the IRF data and solves the problemletave the natural frequencies, damping
ratio and the system’s mode shapes. ReferencesfiL]4] give a complete derivative of this
method. The ITD uses the free response of thedastem. According to [1] the approach is
to sample the same response data, as in Eq. &jthua durationr shift.

For thei-th measurement this means [1]:



qt+7)= Z¢”ea(‘+f) (9)

For all the response points, a vector form of Ega® be written as:
eAlzj

b} =fat, + h=lighev fobe - fohue ] € 1 10

e/‘ZNTj

From this analysis, three sampled data matriegs [Y], [Z] and three modal vector
matrices §], [P], [Q] are created. Next step is to assembleigenvalue problem from these
matrices, from which the complex natural frequeseierd mode shapes can be derived.

(WIV]u] =[u]{a] - (11)

The upper half of[p], is the complex mode shape matrix. Mat{iA] contains the
complex eigenvalues [1,4]. These eigenvalues catobeerted to the natural frequencies and

damping ratio of the tested mechanical system. rftieeigenvalue is assumed to be in the
form
A o=e"=a +p . (12)
The eigenvalues, denoted as in Eq. 12, are-theeomplex natural frequency

A =-n+ja, . (13)

Combining Eq. 11 with Eq. 12 yields

=~ L@+, (14)
2T
[y
W, = Ttan po (15)

r

From Egs. 16 and 17, the undamped natural freqgegranid damping ratio can be found
easily,

Wy =g +107 (16)

7 =" (17)

Results and Conclusion

Fig. 1 shows, a three-degree of freedom theoretntadel considered in this paper to obtain
the system’s dynamic properties (natural frequenailamped natural frequencies, damping
ratio and mode shapes). The objective of the mad& investigate the effects of various



eccentricities due to eccentric weight loading.sTimvestigation is not the subject of this
paper. Artificial data were developed in the MATLARsed on the model and the ITD was

used to extract modal components from these ddta.idput parameters to referring to the
MATLAB code are provided in Table 1.
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Fig. 1. Theoretical model.

Table 1. Model parameters.

K 16.49 + 0.12 Nhm* m 43.702 kg

Ly 0.690 m (690 mm) X 288582.52 kgnnt
Ly 0.280 m (280 mm) ly 1736939.6 kghn'
L, 0.029 m (29 mm) . 2019396.6 kghnt

Table 2 and Table 3 show the results obtained éyptbposed analytical method, and also
the results obtained from the artificial data \ha 1TD extraction technique are shown. The
differences between the analytical model and tHe Were found to be in the range from
0.38 % to 9.34 % for the natural frequency, andhftb20 % to 9.66 % for the damping ratio.

Table 2. Analytical and estimated modal components.

Mode Analytical model ITD Error [%]
1 N. freq. [Hz] 3.84870 N. freq. [Hz] 3.86346 0.38
Damp. ratio 0.08457 Damp. ratio 0.08828 4.20

5 N. freq. [Hz] 7.11782 N. freq. [Hz] 6.51007 9.34
Damp. ratio 0.02581 Damp. ratio 0.02857 9.66

3 N. freq. [Hz] 9.87793 N. freq. [Hz] 9.45718 4.44




|  Damp.ratio | 0.013814  Damp. ratio 0.01464 5.64
Table 3. System’s mode shapes.
Mode 1 Mode 2 \ Mode 3
Analytical model
1.3148410% -4.161571077 4.7804510%
-1.9761210 4.2504210%° 7.4488310%
2.5857810° 1.28232910° 1.7310410°
ITD
1.5312210% -5.3977610*° 4.2504510%°
-3.335511012 2.2234510° 1.2823310°
4.7735610° 1.5734010° 1.2732810°

On the basis of the results obtained it can beiwgoall that an acceptable level of
agreement can be achieved between “test data’ lemdesults obtained by the proposed
method.

Conclusion

Obtaining accurate modal parameters that can be fosevalidating analytical models is a
non-trivial and exacting task. This paper preserdadanalytical method for solving the
characteristic equation of higher order, which arishen solving ordinary differential
equations of motion of rigid body systems witk p° < 10 degrees of freedom, from which
the system’s modal components can be found eaBiyalidate the model, artificial data
were reproduced in MATLAB, and the results comparét results confirmed an acceptable
level of agreement between the analytical modgb@sed and the modal technique — ITD.
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