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Abstract: The aim of this paper is the identification of mechanical parameters of 

cervical implant material and the mechanical structure. This mechanical structure was 

designed for measuring the biomechanical interaction between the implant and the 

surrounding bone. The main idea of this device is based on the dynamic response of 

connected structure. It is important to know how and how much the parameters of 

structure response depend on the boundary conditions which are represented by the 

surrounding bone or another support.  Boundary conditions will be represented by two 

cases. In first case will be described linear model of boundary condition and in second 

case will be described non – linear model. It is necessary to know how the linearities 

or non-linearities influence the response of the structure and where the non-linearities 

can occur. Will be described the experimental device and its mathematical model. The 

cervical implant will be represented as a connection between the surrounding bone 

and the mechanical structure. By the comparison the numerical simulation and 

experimental data will be identified the parameters of simplified mathematical model. 

Experimental device will be put to the dynamic excitation and the response of system 
will be measured.  
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1. Introduction 

The measure of the mechanical stability of cervical implant is crucial question 

still. The stability of spinal implant is one of most important conditions for 

successful surgery. Nowadays, there are not any ways how to describe the stability 

and give about it some information to surgeon. So, during the operation, surgeon can 

check the stability of implant only by his experience or he can try to guess it. For 

measure the stability of spinal implant was designed a simple device. The dynamic 

response is obtained from FFT. There is a relation between spinal implant stability 

and response progress of connected mechanical structure. We suppose there are 

several factors influenced the response function also. It mostly means the influence 

of non-linearities which can affect the dynamic response and accuracy of implant 

stability evaluation and different boundary stiffness and damping. 
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Fig. 1.The boundary conditions represented by the springs and damper 

2. Composing the mathematical model 

The boundary conditions are represented by the springs, which have properties 

according to used material. It is showed that the stability of implant affects the 

boundary stiffness and damping. Thus in the model is expected that the stiffness kn, 

kt and dumping b will be used as a function. The model is represented by the beam 

with different boundary conditions. 

The boundary stiffness and damping represent the implant stability. If the stability is 

increasing the stiffness is increasing too.  

 

Numerical model was created by finite element method. The model of beam 

with dependent boundary was created. There were used measured properties of 

material in support of the beam. In first case was simulated linear model. There were 

used a physical discretization. This method is suitable for linear system. We can get 

by this method the response at steady state vibrations. 

 

2.1. Modal characteristic of the beam 

In the graph 1 is showed a resonant frequencies.  

 
Fig. 2.Harmonic response created by finite element method 

In the second step was created modal analysis for obtaining the response 

function (Fig. 3). We can see that resonance frequencies are very similar. First 

resonance is about 84Hz, second about 500Hz and third about 1480 Hz. In these 

three resonances we measure the dependence on the boundary stiffness and 

boundary damping.  
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Fig.3. Frequency response function of the beam 

2.2. Discrete model of the beam 

The next was created the model of discretized beam and different boundary 

stiffness and damping were applied. The beam was divided to several parts (mostly 

used 12 for calculations) with 2 degrees of freedom (vertical translation and 

rotation) connected together by linear springs and dampers. Boundary stiffness and 

damping is represented by torsion and normal springs and dampers which connects 

one end of beam to the ground. 

This model was used to derive the frequency responses with respect to 

different parameters of boundary conditions. As we can see in Fig.4, if we increase 

boundary stiffness than natural frequencies are moved to higher frequency. In the 

Fig. 5 there is illustrated the effect of change of the boundary damping, if the 

damping is decreased the amplitudes of the stable state vibrations are increased. 

 

Fig.4. Frequency response function with respect to multiplication of boundary stiffness 



 

 

 

Fig.5. Frequency response function with respect to multiplication of boundary damping 

3. Experimental results 

In the Fig. 6 we can see, what happened when we applied the force in the 

support of beam. Dashed curve means the state after load. We can see that the 

resonance is moved to higher frequency and the amplitude is rapidly increased. In 

the graph is showed the frequency response for the sweep signal. The middle 

resonance (about 580Hz) is not beam resonance but it is resonance of the actuator. It 

is shown that the second and third measured resonances are moved to lower 

frequency if we use more elastic material in the support. First resonance was not 

measured because the excitation system is based on the inertia force and below 100 

Hz exciting force was very small.  

 
Fig. 6.Response function of the beam (blue: k = 45N/mm, green: k= 10N/mm). 



 

 

Comparing the experimental results and frequency responses of the linear 

model we can say that preload of material in the beam support causes the small 

increase of its stiffness and decrease of its damping. It proves that the material 

behavior is nonlinear. 

4. Nonlinear boundary conditions 

In last step was created the situation with non-linear boundary. There were 

created simple model with nonlinear stiffness and damping presented by this 

formulation: 

           
  and                     , 

where       are forces in the boundary, variables       are static values, parameters 

      are small and parameter c = 1800. Damping characteristics has higher slope 

around zero velocity and slope equal to damping applied in linear case for higher 

velocities. In this model we study how this type of nonlinearity affects the natural 

frequency and if we should remember its effect when we measure implant primary 

stability. In figure 7 are compared spectra of the free vibration at transient state of 

linear model and model with applied nonlinear boundary condition described above. 

 

Fig.7. Acceleration spectra of the free end of beam on free vibrations 

Fig. 7 illustrates that weak non-linearity of boundary conditions affect the 

amplitudes especially of second resonance also the magnitudes of second and third 

resonance frequencies are impacted. Bigger non-linearity of stiffness causes lower 

amplitudes of second and third resonance and higher frequency shift of the third 

resonance. Damping characteristic with lower linear part causes higher amplitudes 

of 2
nd

 and 3
rd

 resonance and lower amplitude of 1
st
 resonance. 
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5. Conclusion 

In this paper were presented the base of measuring the implant primary stability 

by the modal and harmonic analysis. Similar method was already used in the case of 

hip replacement [2]. For the first time was created simple model with the elastic 

support and the stiffness in this support was changed in the percentage of k = 

45N/mm. However can be the real stiffness non-linear, for the small amplitude of 

vibration we can expect linear behavior. But from the other hand, if we apply a force 

in support we change the stiffness but statically. Thus it means that in the model we 

can only change the value of stiffness, because it depends on the vibration 

displacement as a linear function. We can also measure amplitude dependence on 

the boundary damping. It seems to be that if apply a force in support, the boundary 

damping is changed. In the real model we can see that the resonant amplitudes 

increase if we apply the force. So, there are two ways how to associate stability of 

implant with evaluation of the response function. We suppose it is possible to find a 

relation between primary stability of the implant and the response function of the 

connected structure. In this paper we found the clear relation between boundary 

stiffness, damping and response function but in the real case (in vivo) we must use a 

statistical method for evaluating the relation between primary stability and the 

response function because we know that each patient is individual.  
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