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Abstract: Twenty real dimensions beams from the glued laminated timber were 
tested in our previously works. Twenty advanced FE models were created precisely 
according to tested beams. Input files for FE models are lengths of segments and local 
moduli of elasticity. The segment is part of lamella between two finger joints. Each 
local modulus of elasticity was obtained via non-destructive penetration test. The 
output for comparison between real beam and FE model is displacement in half span.  
The quality of input data file from experiments is very important for the good 
agreement between real tested beams and FE models. In advanced FE models is 
described distribution of local moduli of elasticity via distribution function. The 
solution is based on the LHS. Accuracy of each distribution function is dependent on 
the number of measured local moduli of elasticity. In presented work is probabilistic 
approach for determination of corresponding number of penetration tests as function 
of segments lengths. Results of this analysis will be used in the latter series of bending 
tests of new real dimensions beams and corresponding advanced FE models. 
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1. Introduction 

The present contribution builds upon an extensive experimental program examining 
the behavior of glued laminated timber beams. Twenty beams were tested at the 
Department of steel and timber structures of the Faculty of Civil Engineering in 
Prague. Two types of experiments were conducted [1,2,4]. First, non-destructive 
measurements were performed to measure the elastic moduli of timber in the fiber 
direction at 1448 locations while monitoring the current state of moisture [6, 7]. The 
second type of experiments, performed on twenty beams, corresponds to destructive 
four-point bending tests with the option to measure various parameters with 
principal attention accorded to deflection at the center of beams.  

The second part is then concerned with the finite element (FE) simulation of 
these experiments including the introduction of material uncertainty through 
variable Young’s modulus. The first series of calculations assumes constant moduli 
assigned to individual segments as averages of values measured for a given segment. 
The numerical results show a relatively good agreement of this deterministic 
approach with experiments. The next part of the paper then deals with probabilistic 
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simulations of the same beams assigning to each segment of the beam Young’s 
modulus with a given probability of distribution. Individual samples (realizations), 
eventually providing the probability density function or the distribution function of 
the maximal deflection, were generated using the Latin Hypercube Sampling (LHS) 
method.   

2. Probabilistic modeling using FEM 

The advanced FEM models employ probabilistic simulations performed in the 
framework of LHS method. In the light of this, each segment is assigned Young’s 
modulus with a corresponding probability density function [3]. In all cases the 
Gaussian distribution with the given mean and standard deviation is assumed as seen 
in Figure 1. 

 

 

Fig. 1. Illustration of the input data used in the LHS method. 

 

 

Fig. 2. Principle of selecting the k-th 
sample in the LHS method. 

Fig. 3. Resulting maximal deflections for a 
single beam from one hundred 
realizations. 
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The associated distribution function is then utilized to generate individual 
samples. In the present study the distribution function was split into 100 intervals to 
randomly select a single value kE as schematically shown in Figure 2. This result is 
in accord with the LHS method based on 100 strata. The resulting map of 
realizations, see Table 1, is constructed such as to comply with a statistical 
independence of elastic moduli from segment to segment. Note that selecting 
lamellas to form a beam is conducted in a totally random manner. 

Table 1. Example of creating individual realizations using the LHS method for a beam with 
18 segments and 100 strata 

 Beam for 
run 1 

Beam for 
run 2 

Beam for 
run 3 

...... Beam for 
run 100 

Segment 1 5E1  90E1  16E1   4E1  

Segment 2 11E2  7E2  3E2   92E2  

………..       

Segment 18 85E18  1E18  5E18   10E18  

 

  Figure 3 shows a variation of maximal deflections from 100 samples derived 
for a single beam with a given pattern of segments. These results can be statistically 
evaluated and fitted to the selected probability density function as illustrated in 
Figure 4 with the corresponding plot of the distribution function in Figure 5 for the 
Gaussian distribution. 

  

Fig. 4. Example of the Gaussian 
probability density function of deflection 
for the selected beam. 

Fig. 5. Example of the Gaussian 
distribution function of deflection for the 
selected beam. 

 

3. Comparing obtained results from FEM simulations and experiments and 
their evaluations 

This section compares the results provided by individual methods. Henceforth, 
attention will be dedicated to the results provided by probabilistic simulations. To 
compare individual approaches (experiment, deterministic and probabilistic 
modeling) a single value given by the averages obtained from 100 samples, see also 
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Figures 4 and 5, will be adopted. This appears in Table 2 suggesting in such a case 
no need for more advanced and computationally exhausted probabilistic simulations.  
It might be, however, expected that a better agreement with experimental results will 
be obtained with improved probabilistic data of input parameters conditioned by 
considerably more measurements in individual segments (recall that only four 
measurements are presently available for each segment). Probability of not 
exceeding a certain limit deflection is even more important than a simple mean, 
although not examined, which might provide further insight in the behavior of such 
structures. 

Table 2. Comparison of measured and numerically derived deflections for the selected beam 

Material w(mm) Percent of measured 

Measured 19.15 100 

Discrete FEM 18.8 98.17 

LHS 18.83 98.34 

 

For the computational results the probability density function is re-plotted in 
Figure 6. The variations of maximal deflections in Figure 7 showing also the 
comparison with the averages delivered by the probabilistic analysis [5]. Clearly, 
when comparing only averages the difference between deterministic and 
probabilistic modeling is almost negligible. Recall, however, that above each mean 

value one should image a particular distribution, )(, wf nW , as also schematically 

shown in Figure 7. 

 

 

Fig. 6. Comparison of Gaussian 
probability density functions of calculated 
deflections from the ensemble provided by 
all 20 beams. 

Fig. 7. Comparison of measured and 
calculated deflections (the   circles show 
averages from 100 realizations obtained 
for individual beams). 
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This alows us  to estimate the probability of exceeding a certain level of the 
assumed allowable deflection of the beamw as 

∑
=

−=>
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wwP
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),(,

1
1)(               (1) 

 where N is the number of beams and FW,n is the corresponding distribution function 
of the deflection of the n-th beam. 

4. Conclusions 

The presented results demonstrated that a certain improvement in the prediction of 
the response of glued timber beams can be achieved by extending the deterministic 
modeling to allow for a variability of input parameters in the framework of 
probabilistic simulation. However, the degree of improvement strongly depends on 
the quality of input parameters being in turn dependent on the number of available 
laboratory measurements. The actual computational methodology is nevertheless 
independent of such data. Also, it is not surprising that the results from the two 
approaches are rather similar since compared on the basis of averages only. 
Information provided by the stochastic analysis is, however, significantly broader, 
recall Equation (1).   
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