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Sensitivity Gain of the Hole Drilling Method 
for Stress State Identification 

Karel Vítek1 

Abstract: The theory for the subsequently drilled experimental holes allows 
improvement of the measurement sensitivity by increasing the original diameter of the 
drilled hole. Simultaneously, the hole-drilling experiment can be repeated with a 
bigger diameter of the drill, while using the same drilling rosette already installed 
previously, either centrically or eccentrically to the drilled hole. Thus the theory 
expands the applicability of the hole-drilling principle for the stress state 
identification. 
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1. Introduction 
Semi-destructive hole-drilling method for a stress state identification is based on 
disturbance of a force equilibrium in a strained body by drilling a hole with 
a relatively small radius R0 perpendicularly to the surface (see scheme in Fig. 1). 
Polar coordinates are defined by the relative radius 10 ≥= RRr  and angle α . The 

thin plate is loaded uniaxially by xσ  principal stress here and thus the stresses 

θθ τσσ rr ,,  in defined section planes θ,r  describe the stress state at a specific 
position r, α . In the case of a straight-through hole, the Kirch’s theory [1, 2] of the 
thin plate loaded uniaxially by a constant principal stress describes the change of the 
stress state from the state before drilling of the hole (Eq. (1)) to the final state – 
Eq. (2). 
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Fig. 1. Description of the stress state in the hole vicinity. 

The residual between both stress states is provided in Eq. (3). It manifests 
itself also in the surface layer around the drilled hole by a measurable strain change, 
that can be calibrated in advance. 
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Thanks to the Hooke’s law valid for isotropic material, the changes of related 
strains rε , θε , θγ r  a zε  in the straight-through hole vicinity can be derived from 

the plane stress state change θθ τσσ rr ,, , Young’s modulus E  and Poisson’s ratio 
ν - see Eq. (4).  

If the uniaxial stress state with MPax 1=σ  principal stress is expected in the 
straight-through hole position (see Fig. 1), the graphs in Fig. 2 and Fig. 3 describe 
courses of tangential θε and radial rε  strains in dependency on relative radius r and 

deviation angle α  from xσ  principal stress direction. The strains are computed with 
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3,0=ν  Poisson’s ratio and are multiplied by the size of Young’s modulus for better 
lucidity. The rε , θε  strains reach the highest values in 21 ÷=r  relative radius 
range. Therefore, this is the most sensitive area for placement of drilling rosette 
strain gauges used for measuring of surface strains. 
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Fig. 2. Strain in the tangential direction, )(rθε . 

Presume the drill radius mmR 6,12 0 = . Then the radial dimension of the 

rosette strain gauge mm7,1  corresponds to relative radius 8,0/7,1/7,12 0 =≅≅ Rr  
in Fig. 4. The simulation of the radial strain gauge measurement in dependency on 
its relative distance r  from the hole center is depicted in Fig. 5 for highest radial 
strain observed by curve 1 in Fig. 3. 
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Fig. 3. Radial strain, )(rrε . 

The quality of strain gauge placement (the strain gauge with 2=r , its 
relative length is expected here) is documented by potential of the signal measured 
(given by strain along the strain gauge winding) related to the area total potential. 
The area is presumed to be of 51÷=r  relative length. The strain gauge placed 
closest to the drilled hole is able to indicate 75% of strain, which is released for 
measuring thanks to the hole drilling. The measurement sensitivity during the hole 
drilling thus can be increased by putting the strain gauges closer to the hole edge or 
by relative augmenting of the drill diameter to the diameter, at which are the strain 
gauges placed in the rosette. The experiment also can be run repeatedly with a 
gradual increase of the drilled hole diameter. If a minor drill diameter is chosen in 
the experiment first phase and the rosette strain gauges are installed in a relative 
distance 42 ÷=r , the measurement of relaxed strain depletes 40% of its potential 
approximately. The potential of relaxed strains thus can be better exploited by 
increasing the drill diameter, which results in a relative shift of the strain gauges to 
the edge of the hole or by a second measurement using the same drilling rosette and 
the drill of a bigger diameter. In the case of drawing the strain gauge nearer to the 
hole in the range 31÷=r , the repeated measurement allows measurement of 
approx. 35% of total relaxed strains. 

520



 

 
Fig. 4. Hole-drilling rosette. 

 

 
Fig. 5. The signal potential of the radial strain gauge of 2R0 ≅ 1.7 mm length. 
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2. The stress state identification theory for repeatedly drilled holes 

Let us suppose that the hole (see Fig. 6) of hR  radius and h  depth is drilled in the 
first phase of the hole-drilling experiment. A concentrical hole can be expected in 
any next drilling of a bigger 0R  radius, because of the guiding provided by the 
original hole. The first case (two centrical holes in the center of the drilling rosette), 
where the second hole with the bigger diameter is drilled in one cycle to the same 
depth hh =0  and a normalized drilling rosette (standard E 837 [3]) is used for the 
stress state identification, allows using of the standard theory. Here, the values 
measured on strain gauges during both measurements are summed and evaluated for 
the final hole diameter 00 2RD =  and depth h . In the second case, where both 

concentrical holes are drilled to the same depth hh =0  in one measuring cycle 
either centrically or eccentrically to the drilling rosette, the generalized hole-drilling 
principle theory [5, 6] can be used for the stress state identification analogically, this 
time covering also the potential hole eccentricity. Similarly to E 837 standard, this 
theory is based on the similitude of the plane stress state on the body surface to the 
Kirch’s plate with a straigh-through hole. In the third case, the situation is further 
generalized, and we assume the same eccentricity of both holes to the rosette center 
and different depths of both holes. Also here the situation is close to the Kirch’s 
plate, and thus the hole-drilling principle theory [5, 6] can be further expanded by 
modifying the individual stress components in Eq. (3) according to Eq. (5) through 
multiplying by constants related to the stress state in the vicinity of a bottom hole 
running perpendicularly to the surface of the body. 
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Fig. 6. Repeatedly drilled hole. 

We assume, supporting such an extension of a generally accepted and used 
theory by input of new constants makes sense. Let us suppose the first hole is drilled 
by a drill of hR  radius to the h  depth (see Fig. 6) and the hole is than redrilled to a 

concentrical hole with a higher radius hRR ≥0  to a depth hh ≤0 . The stress state 

calibration around the hole is realized by applying seven constants 171211 ,...,, ccc . 

The constants ),,,,( 00 RRhhrc hk  are dependant on relative distance 0/ RRr =  

from the drilled hole, on relation between depths h  and 0h  and between radiuses 

hRR ,0 . A relations of these suitable for the hole-drilling experiment can be further 
concretized. The application of Hooke’s law (5) to Eq. (4) leads to the formulation 
of strains in Eq. (6). 

Let the strain gauge winding be oriented along the g direction (depicted in 
Fig. 7) with acute ϕ  angle from θ  axis at the point described by coordinates θ,r  
(also see Fig. 1). The strain along the strain-gauge winding g  which is identified by 

the strain-gauge, results from θε , rε  and θγ r  strains and is derived by the use of 
ϕ2  angle through the Mohr’s transformation (7). 

 ϕ
γ

ϕεεεεε θθθ 2sin
2

2cos
22

,rrr
g +

−
+

+
=  (7) 

Figure 1 shows the partially unit vector defined in the direction of xσ  
principal stress in the angle α  to the evaluated point, above which the thi −  strain 
gauge winding is positioned in the g direction (see Fig. 7). The curvilinear integral 
of the normalized strain transformed by Eq. (7) along the winding with total length u 
defines the )(αit  strain-gauge sensitivity for xσ  principal stress in Eq. (8). 
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Fig. 7. 

A definition of the second sensitivity of this strain-gauge )2( πα +it  for 

yσ principal stress rotated along the surface by 2π from the xσ  stress direction 

follows a similar way. Both sensitivities of the thi −  strain gauge of the drilling 
rosette are functions of the theory constants 171211 ,...,, ccc  and particular positions 
and orientations r , α , g  of points along the winding. The orientation and position 
of individual strain gauges is defined in accordance with E 837 standard [3], which 
postulates the hole drilled in the ideal center of the drilling rosette, defines the angle 
α  parameter of a particular strain gauge to xσ  principal stress and derives the 
placing of the other strain gauges of the rosette from it. Here in this more general 
theory, the symbol α marks the position of a defined base point of the i-th strain 
gauge to xσ  principal stress. This α angle of the i-th strain gauge thus results from 

its relative position to the main strain gauge, which is inclined by by α  from xσ  
principal stress. 
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For unknown principal stresses xσ , yσ  and angle α  a set of at least three 
non-linear and independent equations can be established from the computed 
sensitivities of individual strain gauges in analogy to Eq. (9). The equations 
encompass the influence of both principal stresses on iε  strains measured by strain 
gauges. A convenient way of their solution is reported in [5]. 

 )( )( )2( )( ,, ασασπασασε yiyxixiyixi tttt ⋅+⋅≡+⋅+⋅=  (9) 

524



 

The regression model proposed here is an analogy to the hole-drilling method 
standardized in E 837 and will be likely valid in relative distances 20 ≥= RRr , 
which are also recommended for the standard method. The exploitation of the more 
sensitive area near the drilled hole changes the regression model characteristics, 
which is now closer to Eq. (2) than to Eq. (3) and which can require a modification 
by further five constants. It is also possible on the other hand, that the regression 
model with seven constants will be satisfactory in the whole range of hole-drilling 
method application and the extension by five further constants will not be necessary. 
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