
 
 

NUMERICAL STUDY ON A CROSS-SHAPED SPECIMEN UNDER 
BIAXIAL TENSION  
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Abstract: The aim of the paper is to investigate the thermo-mechanical behavior of a cross-shaped specimen 
under biaxial tension. In the numerical study a new energy conservation equation for fully coupled thermal 
structural finite element analysis was used utilizing the updated Lagrange method for large strain/large 
deflection formulation and the NoIHKH material model for cyclic plasticity of metals using associative plasticity 
with combined kinematic and isotropic hardening. The calculation results were compared with the available 
experimental results. 
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1. Introduction 
The phenomenon that a solid body changes its temperature under mechanical loading has 
been known for long time. The thermodynamics of the process however has never been 
properly understood. Up to now several heat equations have been proposed to model solid 
body thermo-mechanical behaviour [1], although none of their results can be considered 
satisfactory. Moreover, most of them are based on the internal energy material derivative 
formulation, which was derived as a result of a mathematically manipulated energy 
conservation equation with unknown internal energy term. In this paper the authors present a 
new energy conservation equation [3], which formally takes into account all mechanical and 
thermal energy contributions. Under the word “formally” we mean that the equation is 
complete with respect to the number of its terms, however some of the terms might still be 
considered vague, which enables further improvement, such as considering the plastic heating 
via a heat generation rate per unit volume. Although, the equation various application has 
already been shown [4], [5], more experiments are needed to investigate how much its results 
correspond with reality.  

 In this paper a numerical study on a cross-shaped specimen under biaxial tension is 
presented using the new equation. The calculation results will be compared with the available 
experimental results. 

2. Theory background 
In the numerical study the finite element method (FEM) was used utilizing a fully coupled 
thermal structural analysis and large strain / large deflection formulation with the updated 
Lagrange method. The governing equations to describe deformable body behaviour are the 
force equilibrium equation and the energy conservation equation expressed in the following 
variational forms: 
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 In equations (1), (2) are the velocity vector and the temperature  stand for 
the Cauchy stress tensor, the strain rate tensor and the heat conductivity tensor 

 denote the volume force vector, surface traction vector, nodal force vector, 
heat flux vector, normal heat flux, heat generation rate per unit volume and nodal heat flux 
and 

,Tv σ,d,K

, ,i nq r Qb, t, f ,q,

,cρ  represent the material density and specific heat respectively. 
 Considering that the strain rate tensor has the additive decomposition 

e p Tα= + +d d d I�  , where  stand for its elastic and plastic parts, e pd ,d α  is the coefficient of 
thermal expansion and  is an identity tensor, eqs. (1) and (2) are supplemented with the 
following constitutive and evolution equations: 
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 Equations (3)-(5) represent the extended NoIHKH material model for cyclic plasticity 
of metals [2], modified for large strain/ large deformation, using combined isotropic and 
kinematic hardening with associative plasticity, where  is a fourth order cyclic material 

tensor  are the 4
cyclC

Pˆ ˆ ˆ,Σ, X,dI th order unit tensor, the corotational deviatoric stress tensor, the 
corotational back stress tensor and the corotational plastic strain rate tensor, ,p pε ε�  denote the 
accumulated plastic strain and the accumulated plastic strain rate and 0, , , , , ,cycl cyclQ b Eγ γ ω µ∞  
stand for the material properties. In the Cauchy stress update calculation and also in the 
corotational back stress evolution equation (4) derivation there was used the Jaumann 
objective rate in the form of the Green-Naghdi objective rate utilizing the following rotation 
tensors at the midpoint and endpoint configuration of the body: 
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where 
1
2

n+
W  is the spin tensor at midpoint configuration,  stands for the rotation tensor at 

the previous configuration and  denotes the time step value. The tensor exponential 
function was expressed with the Rodriguez formula. The plastic heating of the body was 
achieved via a heat generation rate per unit volume, expressed as 80% of the internal plastic 
power, which means that 80% of the dissipated plastic work has changed into heat: 
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2.1 Time discretization issues 
 In this calculation the simplest time discretization scheme was used. Let variable 
x denote either the nodal temperature or the nodal deformation vector in the calculation. 
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Fig. 1. Time discretisation  

 
 Considering figure 1 and constant time step, the average velocity of the variable x  in 
the time interval ( 1n nt t +,  and ( 1n nt t− ,  can be calculated as follows 
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 Similarly, the average acceleration of the variable x  in the time interval ( 1n nt t +,  can 

be calculated according to the following formula: 
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 If we don’t know, how the velocity and acceleration changes with time, we can simply 
use the definitions (9) and (10) at the end points of the time intervals: 
 ,          ,  1 1n n n

averagex x+ +≈ ,� � 1n n n
averagex x −≈ ,� � 1 1n n n

averagex x+ +≈ ,�� �� ,              (11) 
from which the following formulas can be derived for the x  variable velocity and 
acceleration at time 1nt + : 
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 In commercial codes it is usually presumed, that the velocity and acceleration of the 
variable x  changes linearly between the discrete times 1 1, ,n n nt t t− + . Then applying the 
trapezoidal rule we can rewrite the corresponding average values as follows: 
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which after being supplemented with equations (9) and (10) will imply the following formulas 
for the x  variable velocity and acceleration at time 1nt + : 
 

 ( )1 12n n n nx x x x
t

+ += −
∆

� �− , ( )1 1
2

4 4n n n n nx x x x x
t t

+ += − − −
∆ ∆

�� � �� .   (14) 

 
 Both time discretisation schemes (12), (14) are acceptable from the mathematical point 
of view, however their results might slightly differ.   

3. Numerical example 
As a numerical example a cross shaped specimen under biaxial tension was studied. Figure 2 
depicts the specimen geometry, the body of which contains 60mm long and 0.2mm wide axial 
cuts, to homogenize the stress field at its centre. In the numerical study only 1/8 of the 
specimen was modelled (Fig. 3) employing 3 planes of symmetry. As a simplification, no 
fillets and no axial cuts were modelled. The body was loaded gradually using 0.5mm 
maximum prescribed axial deformation at its four ends. The deformation was applied as a 
ramped load and the maximum prescribed displacement was achieved in 10 substeps. In the 
analysis an 8 node three-dimensional solid element with linear shape functions was used. Heat 
convection through all surfaces was considered, applying zero bulk/environmental 
temperature. The body was initially at rest with zero initial temperature. Analyses with and 
without heat generation rate per unit volume were carried out. The calculations were run as 
transient-dynamic ones, using a time step of 1.0 second. 
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Fig. 2. Specimen geometry 

 
 In the numerical study low carbon steel material properties were used, which were 

considered to be constant. The used cyclic material properties however are not necessarily 

 

R1 T2

60  0.2mm cuts 

60  
260  



correct since we couldn’t make experimental tests. Table 1 outlines the employed material 
properties. 
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Tab. 1. Material properties 
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Fig. 4. Displacement vector sum at the end of the analysis in meters 
 

 
 

Fig. 5. Temperature field at the end of the analysis in centigrades 



 
 

Fig. 6. Von Mises stress at the end of the analysis in pascals 
 

 
 

Fig. 7. Accumulated plastic strain 



  
Time 1s Time 2s 

  
Time 3s Time 4s 

  
Time 5s Time 6s 

  
Time 7s Time 8s 

  
Time 9s Time 10s 

 
Fig. 8. Negative temperature regions are depicted in colour 



Time vs Temperature at the center of the specimen
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Fig. 9. Temperature time history curves at selected nodes  
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Fig. 10. Biaxial test on an AlMgSi1 specimen after Franke H [6],[7] 

Figure 10 shows the biaxial test result on an AlMgSi1 specimen after Franke H [6], found in 
[7]. In the test the temperature measurement was carried out at the centre of the specimen. As 
we can see in figure 10, the temperature decreases in the elastic region until the material yield 
stress is reached. When plastic deformation takes place, the temperature reaches its minimum 
then it increases as the deformation continues. Although the numerical calculation results 
differ in orders of magnitude from the experimental results, the phenomenon of the 
temperature decrease at the centre of the specimen can be observed in both cases.  



 At this point it is necessary to emphasise that in the two tests different material was 
used. In our numerical study a low carbon steel material properties were employed, while in 
the experiment an aluminium specimen was used.  In fact, many details of the experimental 
test are still unknown, such us the loading rates, the used material properties, the specimen 
geometry and the temperature sensor exact location, which make the comparison extremely 
difficult.  

5. Conclusion 
In this paper a numerical study on a cross shaped specimen under biaxial tension was carried 
out using fully coupled thermal structural analysis with new energy conservation equation. 
The analysis utilizes large strain/ large deflection formulation and the extended NoIHKH 
material model for cyclic plasticity of metals. In the numerical study temperature decrease 
was observed at the centre of the cross shaped specimen. The same phenomenon was reported 
in the only experimental test on a cross shaped specimen, which the authors consider to be 
positive. In spite of the capability of the new energy conservation equation to reproduce the 
phenomenon of the cooling at the centre of the specimen, at this time it is too early to draw 
any conclusion about the calculation results. More detailed experimental and numerical tests 
are needed to verify the equation properly.  
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