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Summary
Boundary element method is used for stress separation in
two-dimensional photoelasticity.
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Introduction.

Two-dimensional photoelasticity has been traditionally, but
falsely, presented as a whole field method of experimental stress
analysis. It actually can provide complete information related to
stress only at the boundary of the model, where one of principal
stress is known. For general interior point photoelasticity
provides only two pieces of information related to three components
of the stress tensor and an additional information is needed in
"order to fully determine the state of stress.

The most commonly used method of stress separation is a numerical
integration of an equation of equilibrium. The results of this
numerical integration are very sensitive to errors in isoclinic
parameter measurement and its obvious disadvantage is the
accumulation of errors because of the summation procedure.

In order to improve an accuracy of the method and "to spread"
the errors over a certain area some researchers have employed
the overdetermined approach [1], while others have tried to develop
methods which would skip an isoclinic angle measurement
altogether([2]). Because photoelasticity is a boundary value method
(it provides a complete solution on the boundary of the domain
only) it seems to be natural to try to use '"the boundary elements
approach" which has been successfully applied for solving a great
variety of engineering problems.

Boundary Elements Method.
The sum of normal stresses, in the absence of body forces, is a

function which satisfies a harmonic differential equation
supplemented with boundary conditions

S=Z,4el;1 (o) /Z—i=6=(—5;ﬁ€(—2 (T0)
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where M= r:-+[; is the boundary of the domain and "n" is
a normal to the boundary (see Fig. 1).

The "boundary element method" statement for potential problem
can be written as [3)

(V°8) S =[ (c-8)S, — [ (S-3)Gdl;  (2)

*
where "S " is so called "fundamental" solution of a governing

equation VZ(S’)_ A‘" =0 (3)

The unit "charge" is applied in the point "i" under consideration

and [ﬂ’ is the Dirac delta function with the property that
(1) a)
f.sAda= 5 %)
The basic feature of the "fundamental" solution is that
2 (i 2 i)
T80+ AV an =, s(V5")dn + 5" =0 (5)

Using this equation, Eg. (2) can be rewritten into the form

S"+j 5G%dl = f, GS™. ar . @)
where 6= m_n and G

with the "fundamental" solution for two—dimensional domain being
(3] . 1 1
st = L t(}) )

"r" is a distance from the point "i" to the point at the boundary
where the conditions (l1a,b) are defined. These boundary conditions
can be supplied by photoelasticity. At the free boundary, one of
the principal stress (say 6} ) equals to zero. Thus,

S=5%=63 (8)
and free boundary is an "isostatic" 1line "51", while a normal
to this boundary is an "isostatic" line "s,". The differential
equation of equilibrium can be written in a ciirvilinear coordinate

system formed by these two sets of "isostatic'" lines in the form

9% 4 & —6 — o (9)

where "R1" is the radlus of turvature of "51". Noting that

6;=05(5+D) 3 6,=05(S-D) (10)
where ’

S=6/+ 6, 1 D= 6:— 6 11)
we have

dS =D 20 _

ds, - d52+ Ri G 12)

An outside isolated force applied at the boundary of
two-dimensional photoelastic model introduces singularity into
boundary conditions. This singularity can be avoided by modifying
the boundary of the model (for calculation purposes only) by
drawing a small circle around the point of application of the force
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(see Fig 2) and by employing the well known Boussinesqg's solution
[(4].

Stress Separation Procedure.

For the stress separation the boundary of the model is discretized
into "N" elements and value of "S" and "G" is assumed to be
constant on each of the element. Equation (6) is then written in a
discrete form

S= zs [ger +>:s [, 6l (13)

and the 1ntegrals 1n this equatlon are evaluated using standard
Gauss quadrature rule. It is obvious that the accuracy of this
approach depends on the number of ‘"boundary elements" and
furthermore it suffers from the singularity of the '"fundamental"
solution (the results in the area close to the boundary are of
lower accuracy than the results in points which are in a sufficient
distance from the boundary).

Example of Separation of Stress.

The diametrally compressed disk (2 inches in diameter) was chosen
as an example. Two small circles of 0.174 inches were drawn around
the points where the forces were applied. The circumference of the
disk was divided into 44 elements with nodes located in the middle
of each element. The fringe order was measured at the points at
the distance 0.05 inch from the nodal points. These points were
located on the normal to the boundary of the disk. Because the
fringe order is zero at the boundary of the disk, the gradient of
"s" was determined as 1

T = Doos) sos

The boundary conditions for nodes located on the circles around the
points of force applications were determined using a solution for
the isolated force applied to the straight edge of a half space
[4]. The simple computer program was written to calculate the
values of first scalar invariant in the interior points of the
two-dimensional photoelastic model. The inputs into the program are
listed in Table 1, while Table 2. 1lists the results of the
calculation together with theoretical values of the first scalar
invariant of the stress tensor.
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Element 1 2 3 4 5 6 7 8 9 10 n r’

X, 1.0 .98 .94 .87 .77 .64 .50 .34 .17 .15 .08 2

Y .00 .17 .34 .50 .64 .77 .87 .94 .98 .90 .83 \

e 1
Node 1 2 3 4 B 6 7 8 9 10 N

X .99 .96 .90 .82 .70 .57 .42 .26 .16 .11 .04

Yo .09 .26 .42 .57 .70 .82 .90 .96 .94 .86 .83

s .00 .00 .00 .00 .00 .00 .00 .00 -.86 -2.38-3.20

G .60 .80 .80 1.0 1.4 2.2 3.8 9.8 -6.9 -15.4-20.3

coordinates of extremal points of an element

Y
Xni¥y coordinates of nodes [- = [_1+ I—7 n
S; G

first scalar stress invariant and its gradient

+

Table 1-Inputs into a computer program. Fig. 1-Definitions

Definition of the problem.

. applied! force P

Section "a-a

Point 1 2 3 4 5 6 7 8 9 19

X .0 A .2 .3 4 .5 .6 .7 .8 .9

¥P 0 0 0 0 0 0 0 0 0 0

sP .68 .67 .63 .56 .48 .39 .29 .20 .11 .02

55:“’ .63 .62 .59 .53 .46 .38 .30 .21 .14 .06

Section "b-b" !

Point 1 2 3 4 s 6 7 8 9 10 6 2P COSO

X .0 .10 .19 .29 .39 .48 .58 .68 .77 .87 - ——1R

¥P 125 .25 .25 .25 .25 .25 .25 .25 .25 .25

Ple 74 .73 169 .62 .53 .44 34 .25 .16 .08

s 772 .70 .65 .58 .49 .40 .31 .22 .14 .06 . o
th Fig. 2- Boundary condition

“ "

Section “c-c 3 .
point 1 2 3 4 S 6 N 8 9 10 for an isolated force“.
X .0 .09 7 .26 .35 .43 .52 .61 .69 .78
¥P .50 .50 .50 .50 .50 .50 .50 .50 .50 .50
sP 1.13 1.09 .99 .84 .68 .53 .39 .28 17 .09
seale 1706 1.02 .91 .77 .62 .48 .35 .24 .14 .07
th T e P=1
_______________________ R
XP;YP coordinates of the point.
Scal calculated magnitude of first scalar stress i
cale invariant. Ctaesronnes

3
Stn theoretical magnitude of first scalar stress [ P
t invariant. v

Y

FIRIR IR IS

Table 2-Calculated values of the first scalar
invariant for diametrally compressed disk.

P=)

Fig. 3-Separation of stress in a disk
44 elements/44 nodes.
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